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ABSTRACT 

Vector monitoring remains a challenging task for large-scale continuous surveillance. Light Detection and Ranging (Lidar) systems, 

which use laser pulses to detect and characterize objects at a distance (Lidar systems),  offer a solution by capturing the wingbeat 

modulation frequencies of flying insects, especially mosquitoes. However, the wingbeat frequencies of different mosquito species 

are often very similar. The use of additional parameters is necessary to improve the classification. In this study, we used a Scheimpflug 

lidar system to record the kHz-modulated backscattered light of mosquitoes and applied the Random Forest method to select the most 

discriminating parameters. The simplified model, based only on two parameters, the fundamental frequency (Freq) and the first 

harmonic (Harm1), achieved an accuracy of 44.14%, as shown in the confusion matrix. Although this accuracy may seem modest, it 

is remarkable considering the inherent challenges of the problem, such as the reduced parameter set and the complexity of the data. 

These parameters enabled better separation of mosquito specimens collected by the lidar, demonstrating that reducing the number of 

parameters can not only maintain but also improve the model's classification accuracy while reducing its complexity. 

Keywords: Scheimpflug Lidar, Wingbeat Frequency, Harmonic, Mosquito Classification 

RÉSUMÉ 

Classification des espèces de moustiques (Culicidae) : approche simplifiée avec Scheimpflug Lidar pour une 

surveillance optimisée 

 La surveillance des vecteurs demeure une tâche complexe dans le cadre d'une surveillance continue à grande échelle. Les systèmes 

de télédétection par laser (Lidar), qui utilisent des impulsions laser pour détecter et caractériser des objets à distance, offrent une 

solution en capturant les fréquences de modulation des battements d’ailes des insectes volants, en particulier des moustiques. 

Cependant, les fréquences des battements d’ailes des différentes espèces de moustiques sont souvent très similaires. L’utilisation de 

paramètres supplémentaires est donc nécessaire pour améliorer la classification. Dans cette étude, nous avons utilisé un système 

Lidar de type Scheimpflug pour enregistrer la lumière rétrodiffusée modulée en kHz par les moustiques et avons appliqué la méthode 

Random Forest afin de sélectionner les paramètres les plus discriminants. Le modèle simplifié, basé uniquement sur deux paramètres 

(la fréquence fondamentale «Freq» et la première harmonique «Harm1») a atteint une précision de 44,14 %, comme le montre la 

matrice de confusion. Bien que cette précision puisse paraître modeste, elle est remarquable compte tenu des défis inhérents au 

problème, tels que le nombre réduit de paramètres et la complexité des données. Ces paramètres ont permis une meilleure distinction 

des spécimens de moustiques détectés par le lidar, démontrant que la réduction du nombre de paramètres peut non seulement 

préserver mais aussi améliorer la précision de classification du modèle tout en réduisant sa complexité. 

Mots-clés : Lidar Scheimpflug, Fréquence de battement d’ailes, Harmonique, Classification des moustiques 

INTRODUCTION 

Vector-borne diseases continue to pose a serious threat to 

global public health, particularly in tropical regions 

(Gubler, 1998; Organization, 2017). Caused by the 

Plasmodium falciparum parasite and spread by Anopheles 

mosquitoes, mosquitoes are the deadliest animals in the 

world, killing around one million people each year 

(Murray et al., 2012). According to the report (OMS, 

2023), the African Region bears a disproportionate and 

significant share of the global malaria burden. In 2022, it 
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recorded 94% of malaria cases, or 233 million cases, as 

well as 95% of malaria-related deaths, totaling 580,000 

deaths. Among these deaths, 80% were children under 

five, highlighting the devastating impact of malaria on this 

age group in the region. To overcome this challenge, 

medical treatment with affordable drugs, rapid and 

accurate diagnosis, and prevention are all necessary. The 

primary method employed to eradicate the disease is to 

implement preventive measures, such as landscape 

drainage, spraying, urban planning, and marsh 

management according to (Organization, 2015). 

However, the rapid adaptation of the parasite and vector 

remains a major problem. Recently, drug-resistant 

parasites have been discovered throughout sub-Saharan 

Africa (Corbel et al., 2012), and national mosquito 

distribution campaigns have shown a shift in mosquito 

temporal niche to earlier hours in the evening (Gatton et 

al., 2013; Yohannes & Boelee, 2012). Other vector-borne 

infectious diseases on the African continent are 

considered curable with precise knowledge of population 

dynamics and landscape flows (Benelli, 2016; Dao et al., 

2014; Ferguson et al., 2010). This would allow for 

improved existing intervention methods. However, 

quantifying the sustainable ecosystem and life stages of 

mosquitoes is not an easy task. Within a few minutes, the 

activity and airborne proliferation of a mosquito specimen 

can vary by orders of magnitude. These changes are due 

to meteorological circumstances (Kirkeby et al., 2016; 

Malmqvist et al., 2018). Moreover, preferred breeding 

environments and reproductive experiences can be limited 

to plants and small landmarks within a few meters (Chen 

et al., 2024; Liu et al., 2017; Silver, 2007). 

Researchers have used insect samples collected from 

moving vehicles (Silver, 2007), light traps (Liu et al., 

2017), electronic traps (Chen et al., 2024; Potamitis et al., 

2015), kairomone and CO₂ traps (Costantini et al., 1996; 

Mboera et al., 2000), and human appendages (Govella et 

al., 2009; Kenea et al., 2017; Maliti et al., 2015) to assess 

mosquito population dynamics. It is well known that each 

method may be biased towards specific species, sexes, or 

life stages, and that extensive temporal and spatial 

coverage can make surveys very time-consuming. There 

are few methods available to track mosquito flows and 

estimate their spread, often unfeasible for ethical reasons, 

even in cases where powder marking (Brydegaard et al., 

2016; Hagler & Jackson, 2001) is possible. The best 

scenario for sampling is several weeks when the sky is 

clear, despite the possibility of directly correlating 

mosquitoes’ preferred habitats with geographic data, such 

as satellite images or aerial topographic lidars (Hartfield 

et al., 2011; Millette et al., 2010). Consequently, such 

methods are unable to provide a complete description of 

daily activities and flows. 

In recent years, entomological lidar  —a specialized 

form of Light Detection and Ranging (Lidar) adapted to 

detect and analyze flying insects using their optical 

signatures and wingbeat frequencies— and remote 

modulation spectroscopy have been developed by 

(Brydegaard et al., 2017; Repasky et al., 2006) to ensure 

direct insect monitoring (Brydegaard et al., 2014, 2017; 

Malmqvist et al., 2016). Lidar devices used to distinguish 

captured insects rely on wingbeat modulation. However, 

it can be difficult to differentiate mosquito species based 

on wingbeat frequency, as these frequencies frequently 

overlap and are very different between and within species 

(Jansson et al., 2019). For this reason, (Gebru et al., 2018) 

used additional factors to distinguish flying mosquito 

species, including wingbeat frequency, the optical cross-

section of the body and wings, and the harmonic content 

of signals recorded in various spectral and the degree of 

polarization. In this report, we present the parameters for 

disease vector species discrimination obtained through 

classification models (SVM, KNN, Neural Network, and 

Deep Learning) based on three distinct approaches (use of 

original parameters, use of parameters after selection, and 

use of parameters after applying Principal Component 

Analysis (PCA)). The primary goal was to identify 

differentiation parameters for specimens collected by the 

Scheimpflug lidar using classification models. The 

approaches were ranked based on the classification 

models’ accuracy, determining their ability to distinguish 

insect specimens with similar frequencies. 

Data were collected at the Félix Houphouët-Boigny 

Polytechnic Institute (INP-HB South) site in 

Yamoussoukro, Côte d'Ivoire, and cover 54,133 records 

of four different mosquito species: Anopheles coluzzii (A. 

coluzzii), Anopheles arabiensis (A. arabiensis), Aedes 

aegypti (Ae. aegypti), and Culex quinquefasciatus (Cu. 

quinquefasciatus) of both sexes (male and female). The 

wingbeat frequencies used for data extraction are from the 

study (Jansson et al., 2019), where these frequencies are 

well-documented. 

MATERIALS AND METHODS 

Experimental Setup 

The instrument used in this study was installed near the 

geology lab buildings at INP-HB South in Yamoussoukro, 

at coordinates (Lat: 6.872231°, Lon: -5.237526°), see Fig. 

1. A 3.2 W multimode laser diode with a central 

wavelength of 808 nm was used to expand the light 

through a refractive telescope (f = 500 mm, ø102 mm). 

The beam was projected across the landscape and ended 

on a board covered by black neoprene foam with a diffuse 

reflectance of 1.8% at 808 nm. The laser spot measured 

20 cm wide and 1 cm high at the end of the beam. The 

board was fixed at a height of 9 m on a tree located 970 m 

from the lidar system (Lat: 6.877774°, Lon: -5.231588°). 

A Newtonian telescope (f = 800 mm, ø 200 mm) was used 

to capture the backscattered light, which was then focused 

onto a 2048-pixel CMOS linear sensor with a 16-bit 

dynamic range, measuring 14 × 200 µm². To exclude 

ambient light, an absorption filter (RG780) and a 

bandpass filter (3 nm full width at half-maximum, 

centered at 808 nm) were used. The receiver and expander 
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telescopes were mounted on a base fixed to a tripod at 814 

mm from each other. A 45° angle was created between the 

CMOS sensor and the optical axis of the receiver 

telescope. A combined laser driver and time-multiplexed 

switch were connected to the CMOS sensor and laser 

diode. With this module, the laser can operate in 

continuous or modulated mode. In modulated mode, a 

signal from the detector to a multiplexer that activated and 

deactivated the laser was used to expose the sensor’s odd 

and even lines. As the line sensors had a frequency of 3.5 

kHz, the background signal and backscattered signal 

could be subtracted in real-time since each was sampled 

at 1.75 kHz. The laser beam and linear camera were 

aligned on the black neoprene foam. Using this black 

terminating surface reduced the amount of light 

interference in the monitored aerial transect and prevented 

detector saturation. The collected data were stored in 10-

second files, each containing 35,000-line exposures. 

 

Fig. 1. (a) Aerial photograph of the measurement location. The light is transmitted from the lidar near the geology lab buildings, 3 m 

above the ground, and ends on a neoprene-covered board mounted on a tree, 970 m from the lidar system. (b) Photograph of the 

Scheimpflug lidar and its components. The linear sensor in the Newtonian receiver is tilted at 45° relative to the optical axis to satisfy the 

Scheimpflug criterion and achieve infinite depth of field. 

Analysis of wing beat frequency of flying insects 

For entomological lidar data, the fast Fourier transform is 

used to calculate the wing beat frequency of flying insects. 

As a reminder, this fundamental wing beat frequency is a 

discriminating parameter of flying insects. 

𝐒(𝐟) = ∫ 𝐬(𝐭). 𝐞−𝟐𝛑𝐟𝐭+∞

−∞
𝐝𝐭      Eq.1 

Fig.2 shows the optical cross section (OCS and in French 

SEO) of a flying insect detected by the entomological 

Scheimpflug lidar after calibration of the intensity 

backscattered by the latter.At the end of this transform, an 

initial estimate of the fundamental frequency 𝑓0𝑖𝑛𝑖𝑡is 

obtained and it will be used to find the combination of 

harmonics that best reconstructs the original OCS. This 

original cross section contains the contribution of the 

body and that of the wings of the insect Eq.2. 

 OCS = OCS 𝑏𝑜𝑑𝑦 + OCS 𝑤𝑖𝑛𝑔      Eq.2 

The OCS for wing beats OCS 𝑤𝑖𝑛𝑔is considered as a 

linear combination of harmonics with: 

OCS 𝑤𝑖𝑛𝑔 = ∑ 𝑎𝑛𝜑𝑛 𝑛 , with  𝜑𝑛 = 𝑠𝑖𝑛(2𝜋𝑛𝑓0𝑖𝑛𝑖𝑡𝑡) +

𝑐𝑜𝑠 (2𝜋𝑛𝑓0𝑖𝑛𝑖𝑡𝑡) Eq.3 

The coefficients, an, are obtained by the least squares 

method (Eq.4) 

an = (φn
Tφn)−1φn

TOCSwing   Eq.4 

The OCS of the wings OCS 𝒘𝒊𝒏𝒈is reconstructed for 

frequencies lower and higher than 30% of the initial 

estimate f0init. Finally, each frequency is estimated using 

least squares fit (Eq. 5): 

|
𝟏

𝑵
∑ (OCS − OCS 𝒃𝒐𝒅𝒚 − OCS 𝒘𝒊𝒏𝒈)

𝟐𝑵
𝟎 |

𝒎𝒊𝒏
 Eq.5 

The frequency that best reconstructs the OCS is defined 

as the fundamental wingbeat frequency of the insect. Fig. 

3 shows us an OCS and its fundamental wingbeat 

frequency. 
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Fig. 2: The temporal OCS of an insect. The red curve represents the contribution of the insect body. The large peaks 

represent a spectacular reflection. Time-distance image of the passage of a flying insect is shown on the right. 

 
Fig. 3: Fig. 3: a) Optical cross section of an insect as a function of time. b) Power spectral density of the insect wing beats 

after Fourier transformation. This signal corresponds to a random insect used as an example to illustrate the method. The 

measured fundamental frequency is 164 Hz, just for the demonstration of the spectral analysis process applied in this study. 

Mosquito Specimens 

In this article, the wingbeat frequencies of mosquitoes, 

used to retrieve various events in the lidar data collected 

at the INP-HB site, were proposed in a previous study by 

(Gebru et al., 2018), including both sexes (male and 

female) of 4 different species, namely: A. coluzzii, A. 

arabiensis, Ae. aegypti, and Cu. quinquefasciatus. For 

more details on obtaining these frequencies, see (Gebru et 

al., 2018; Jansson et al., 2019). 

METHODOLOGY 

Calculation of lidar parameters 

To improve the accuracy of flying insect identification, 

parameters were selected for this study, namely: the 

fundamental frequency (f0), first and second-order 

harmonics (Harm1 and Harm2), apparent size (appSize), 

optical cross-section (OCS), Mel-Frequency Cepstral 

Coefficients (MFCC) (MFCC1 to MFCC12), flight speed 

(Speed), the ratio of optical cross-sections of the wings 

and body (ratioOCS), the insect's actual size (reelSize), 

and signal length (Length). 

To identify the wingbeat frequency (WBF), f0, a 

combination of several frequency analysis methods was 

implemented to improve WBF estimation accuracy 

(Gebru et al., 2018). Harmonics were obtained through 

autocorrelation, cepstrum, and spectrum as previously 

described (Brydegaard et al., 2021; de Cheveigné & 

Kawahara, 2002; Oppenheim & Schafer, 2004) describes 

the apparent size (appSize) of insects as an additional 

measure of size derived from the opening angle within the 

beam and the distribution of echo pixels. "Apparent size" 

is calculated from the distribution of echo pixels 

http://www.ajter.com/
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according to equation 6. 

𝑎𝑝𝑝𝑆𝑖𝑧𝑒 =
𝑟 ∗ cos(𝜃𝑠𝑒𝑛𝑠) ∗ 𝑙𝑝𝑖𝑥

𝐹𝑟𝑒𝑐

√
∑ 𝐼𝑖𝑛𝑠𝑒𝑐𝑡(𝑝,𝑡)(𝑝 − 𝑝𝑐𝑒𝑛𝑡.)

2
𝑚𝑎𝑠𝑘

∑ 𝐼𝑖𝑛𝑠𝑒𝑐𝑡(𝑝,𝑡)𝑚𝑎𝑠𝑘

 Eq. 6  

where 𝑝𝑐𝑒𝑛𝑡 =  
∑ 𝐼𝑖𝑛𝑠𝑒𝑐𝑡(𝑝,𝑡)𝑚𝑎𝑠𝑘 𝑝

∑ 𝐼𝑖𝑛𝑠𝑒𝑐𝑡(𝑝,𝑡)𝑚𝑎𝑠𝑘
 

Where 𝑝𝑐𝑒𝑛𝑡is the central pixel calculated by the first 

statistical moment, mask refers to pixels and exposures 

exceeding the noise level, and appSize is then calculated 

as the square root of the second statistical moment of the 

echo (pixel distribution) and recalibrated by 𝑟 and system 

parameters described in Table I (Brydegaard et al., 2021). 

The apparent size, appSize, thus represents the spatial 

distribution of light echoes captured by the lidar system 

and is affected by distance 𝑟, the inclination angle of the 

linear camera 𝜃𝑠𝑒𝑛𝑠, and the point spread function (PSF) 

of the receiving instrument. This size is measured by 

considering the distribution of light echoes across the 

pixels of the detector, enabling an estimation of insect 

size. 

The actual size of the insect is determined from the 

apparent size according to equation 7. 

𝑟𝑒𝑎𝑙𝑆𝑖𝑧𝑒 =
𝑎𝑝𝑝𝑆𝑖𝑧𝑒 ∗ 𝐷

√(𝑝𝑦)2 + (𝑝𝑧)2
  Eq. 7  

Where D is the detector-insect distance, and 𝑝𝑦, 𝑝𝑧 are the 

pixel coordinates. The authors (Brydegaard et al., 2021; 

Kouakou et al., 2020) estimate that the OCS of flying 

insects can be expressed as a function of insect wing 

modulation through equation 8. 

OCS = 𝜎𝑡𝑒𝑟𝑚

𝑟𝑖𝑛𝑠𝑒𝑐𝑡
2 (𝐼𝑖𝑛𝑠𝑒𝑐𝑡 − 𝐼𝑠𝑡𝑎𝑡𝑖𝑐)

𝑟𝑡𝑒𝑟𝑚
2 𝐼𝑠𝑡𝑎𝑡𝑖𝑐

 Eq. 8 

Where  𝜎𝑡𝑒𝑟𝑚 is the optical cross-section of the black 

neoprene termination (mm²), 𝐼𝑖𝑛𝑠𝑒𝑐𝑡 is the insect signal 

intensity (16 bits), 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 is the atmospheric signal (16 

bits), 𝑟𝑖𝑛𝑠𝑒𝑐𝑡 is the detection distance of the observed 

insect (m), and 𝑟𝑡𝑒𝑟𝑚 is the distance to the beam 

termination (m). For more information, see (Kouakou et 

al., 2020). The calculation of Speed was done according 

to the approximations of (Li et al., 2020), and the formula 

is given by equation 9. 

𝑆𝑝𝑒𝑒𝑑 =
𝑢𝑥

𝑢𝑥
′

∗ 𝑊 ∗ 𝑐𝑜𝑠(𝜃) ∗ 𝑘  Eq. 9 

Where 𝑢𝑥 is the object-to-lens distance (image focal 

length), 𝑢𝑥
′  is the distance from pixel 𝑝𝑥 to the lens plane 

(object focal length), 𝑊 is the pixel pitch (14 μm), 𝜃 is the 

inclination angle of the linear camera (45° in this case), 

and k is the number of fields of view covered by the insect 

per unit of time. The ratioOCS is defined as the ratio 

between the median optical cross-section of the insect’s 

body and the median optical cross-section of the insect’s 

wings. To calculate it, we first define the object interval. 

Then, we calculate the median optical cross-section of the 

body and the wings. We also define the maximum body 

cross-section of the object to check for saturation, aiming 

to obtain the optical cross-section that best matches the 

captured object. Its formula is given in equation 10. 

ratioOCS =  
OCS𝑏

OCS𝑤
     Eq. 10  

Where ratioOCS is the ratio of the optical cross-section of 

the body to the optical cross-section of the wings, OCS𝑏 is 

the median optical cross-section of the insect’s body, and 

OCS𝑤 is the median optical cross-section of the insect’s 

wings. The signal length (Length) in the context of our 

study refers to the number of pixels that detected the 

insect within the detection field of the optical sensor. The 

actual length is obtained by multiplying the pixel pitch by 

the total number of pixels that detected the insect. Its 

formula is given in equation 11. 

Length =  ∏ 𝜔𝑛 ∗ 𝑝𝑝𝑖𝑥

𝑁

𝑛=1

   Eq. 11  

Where 𝜔𝑛 is the total number of pixels that detected the 

insect, and 𝑝𝑝𝑖𝑥 is the pixel pitch (14 μm). The Mel 

Frequency Cepstral Coefficients (MFCC) were calculated 

based on the work of (Zheng et al., 2001) using equation 

12. 

𝑀𝐹𝐶𝐶𝑛 = ∑ 𝐸(𝑚) ∗

𝑀

𝑚=1

cos (
𝜋𝑛(2𝑚 + 1)

2𝑀
)    Eq. 12  

Where 𝐸(𝑚) is the logarithm of the energy filtered by the 

Mel filter, n is the index of the desired cepstral coefficient, 

and M is the total number of Mel filters. 

Evaluation of mosquito species identification 

parameters by classification models. 

Four classification models were used in this article, 

namely: Support Vector Machine (SVM), K-Nearest 

Neighbors (k-NN), Multi-Layer Perceptron (MLP) - 

Neural Network, and Deep Learning - Deep Neural 

Network. The idea was to see which of these four models 

would give the best result in terms of classification. To 

carry out this study, three different objectives were 

adopted. 

The first objective involved using all 21 original 

parameters that we were able to extract from our mosquito 

specimens, namely f0, Harm1, Harm2, appSize, OCS, 

MFCC1 to MFCC12, Speed, ratioOCS, realSize, and 

Length, which were then used as classifier inputs. 

For the second objective, parameters were pre-selected 

using importance-based selection methods, namely 

Random Forest, which ranks parameters based on their 

ability to improve model accuracy when used in decision 

trees; Lasso, which applies L1 regularization to set the 

coefficients of less important parameters to zero; and 

Recursive Feature Elimination (RFE), which recursively 

eliminates the least important features to improve model 

accuracy. The parameters with high weights in each 
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method were retained and used as classifier inputs. 

For the third objective, a PCA technique was used to 

reduce the dimensionality of the parameters while 

retaining at least 81% cumulative variance. The 

parameters whose linear combination yielded these 

principal components were retained and used as classifier 

inputs. 

Of these three objectives, objective two provided the best 

accuracy, with the Random Forest selection method 

identifying the following 10 parameters as the most 

relevant with their associated weights: Freq (54.25%), 

Harm1 (14.56%), Harm2 (11.60%), MFCC5 (2.07%), 

MFCC6 (1.51%), MFCC4 (1.46%), MFCC7 (1.45%), 

MFCC8 (1.06%), MFCC9 (1.04%), MFCC2 (1.01%). 

These parameters allowed the classifiers to achieve the 

following accuracies: 88.62% for SVM, 85.53% for K-

NN, 89.24% for MLP, and Deep Learning, which were 

significantly higher than the classifier results from 

objectives 1 and 3. To assess the accuracy of these 

selected parameters in discriminating our mosquito 

specimens, we visualized them through 4 different 

combinations (combination 1: Freq, Harm1, Harm2, 

MFCC5, MFCC6, MFCC4, MFCC7, MFCC8, MFCC9, 

MFCC2; combination 2: Freq, Harm1, Harm2, MFCC5; 

combination 3: f0, Harm1, Harm2; combination 4: f0, 

Harm1) using the confusion matrix to identify which 

combination had the highest accuracy. Finally, a 2D 

projection in the PCA space was performed to confirm the 

selected parameter combination for better differentiation 

of each mosquito specimen. We have outlined the 

methodology in the diagram in Fig. 4. 

 
Fig.4: Our flowchart for best parameters selection for mosquitoes' specimen classification. To enhance mosquito 

identification, key characteristic parameters were meticulously selected. Subsequently, three objectives were outlined to 

deepen the study, each designed to evaluate the effectiveness of these parameters in different contexts. To assess 

performance, four classification models were employed, providing a robust framework for comparing results. The 

effectiveness of the selected parameters was validated through testing various combinations using confusion matrices. 

Additionally, a 2D projection was conducted to visually confirm the clear separation of specimens, as presented in the 

flowchart below. 

RESULTS 

The probability density for male and female specimens 

detected by the Scheimpflug lidar is presented in Fig. 5 as 

a function of mosquito wingbeat frequencies. These data 

were obtained by measuring the optical signals generated 

by the lidar, which capture periodic variations caused by 

wingbeats. Although we do not have direct ground truth 

for everyone, we used published data on wingbeat 

frequencies specific to some species, such as Ae. aegypti 

and Cu. quinquefasciatus, to calibrate our models. 

However, these species have similar frequency ranges, 

leading to overlaps in the frequency distributions. This 

overlap can lead to mis classifications, as mentioned. To 

minimize this effect, we calculated probability densities 

to estimate the most likely ranges for each category 

(males/females and species). 
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Fig.5. Probability density of selected specimens. a) male specimens. b) female specimens. 

 

Methods such as Random Forest, Lasso, and Recursive 

Feature Elimination (RFE) were tested to select the most 

discriminative available parameters to resolve this 

ambiguity. Frequency (Freq: 54.25%), the first harmonic 

(Harm1: 14.56%), and the second harmonic (Harm2: 

11.60%) were identified as the most important parameters 

by the Random Forest method (Fig. 6). The cepstral 

coefficients (MFCC) had significantly lower weights 

(between 1 and 2%). However, the selection of these 

parameters enabled the Deep Learning model to achieve 

an impressive accuracy of 89.24%, demonstrating the 

relevance of the chosen parameters. 

 

Fig.6. Comparison of parameter importances (Random Forest, Lasso, RFE) 

 

Table 1 compares the performance of classification 

models based on the three main objectives. Objective 2, 

which uses parameter selection with Random Forest, 

Lasso, and RFE, achieved a better balance between 

performance (up to 89.24% with the MLP and Deep 

Learning models) and simplicity, outperforming the other 

methods tested. 
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Table 1: Comparison of objectives with classification models 

Objective Description Classification 

Models (%) 

Performance Complexity Interpretability 

Objective 1 

(Using all 

parameters) 

Good 

performance but 

increased 

complexity and 

reduced 

interpretability. 

SVM: Accuracy = 

88.62%, K-NN: 

Accuracy = 85.53%, 

MLP: Accuracy = 

89.24%, Deep 

Learning: Accuracy = 

89.09% 

High High Lower 

Objective 2 

(Selection with 

Random Forest, 

Lasso, and RFE) 

Most suitable 

method. 

Maintains high 

performance 

while simplifying 

the model. 

Random Forest is 

effective for 

selecting 

discriminative 

parameters. 

SVM: Accuracy = 

88.62%, K-NN: 

Accuracy = 85.53%, 

MLP: Accuracy = 

89.24%, Deep 

Learning: Accuracy = 

89.24% 

High Reduced Good 

Objective 3 

(Dimensionality 

reduction with 

PCA) 

Useful for 

dimensionality 

reduction, but 

model 

performance 

decreases and is 

less suitable for 

biological 

interpretation. 

SVM: Accuracy = 

78.51%, K-NN: 

Accuracy = 76.34%, 

MLP: Accuracy = 

86.25%, Deep 

Learning: Accuracy = 

83.15% 

Reduced Reduced Less suitable 

 

The effectiveness of parameter combinations in 

distinguishing between two insect specimens—

specifically mosquitoes—is evaluated using a confusion 

matrix, as shown in Fig. 7; here, they are mosquitoes, 

through the confusion matrix. Fig.  7-a, uses the 

combination of 10 parameters, thus reaching an accuracy 

of 43.33%. However, this accuracy is not likely, because 

the MFCCs have a lower weight, therefore do not bring 

significant information. 

By limiting ourselves to the significant parameters, that is, 

those with relatively large weights [Freq, Harm1, Harm2, 

MFCC5] (Fig.  7-b), the accuracy increases slightly to 

43.74%. On the other hand, using only frequency and 

harmonics (Fig.  7-c), we obtain an accuracy of about 

43.97%, indicating that these parameters are the most 

relevant than the set of 10. The best accuracy is obtained 

with a very simple set of two first parameters [Freq, 

Harm1] because they have the highest weights (Fig.  7-d), 

reaching an accuracy of 44.14%. This accuracy with two 

parameters is indeed the highest in this case. This 

demonstrates that the fundamental frequency and the first 

harmonic are sufficient in this study to discriminate two 

overlapping species. Figs 8 and 9 present the distribution 

of male and female specimens projected onto the first two 

principal components (PCA) based on the selected 

parameters, with 10 parameters in Fig.  4 and 2 parameters 

in Fig.  5. These Fig. s allow visualization in 2D space, 

highlighting the value of using 2 parameters instead of the 

selected 10. In Fig.  4, mosquito specimens are projected 

using the full set of 10 parameters ([Freq, Harm1, Harm2, 

MFCC5, MFCC6, MFCC4, MFCC7, MFCC8, MFCC9, 

MFCC2]), with males on the left and females on the right. 

Male and female specimens are relatively dispersed along 

the principal axes (PC1 and PC2), with significant overlap 

between certain species. For example, A. arabiensis and 

A. coluzzii overlap substantially among males, as do A. 

arabiensis and Cu. quinquefasciatus among females, 

indicating difficulty in distinguishing these species using 

only the 10 selected parameters. The overall accuracy 

associated with this parameter set (43.33%) reflects this 

difficulty in accurately differentiating certain species. 

Harm1, Harm2, and MFCC combinations on model 

accuracy. a) [Freq, Harm1, Harm2, MFCC5, MFCC6, 

MFCC4, MFCC7, MFCC8, MFCC9, MFCC2]. b) [Freq, 

Harm1, Harm2, MFCC5]. c) [Freq, Harm1, Harm2]. d) 

[Freq, Harm1]. 

In contrast, the specimens are projected using only two 

parameters, Freq and Harm1, as in Fig.  3-d. 

Males (left): A better separation between the different 

species is observed. Notably, Ae. aegypti and Cu. 

quinquefasciatus are well separated from the other species 

along the PC1 axis. However, slight overlap remains 

between A. arabiensis and A. coluzzii. 
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Females (right): Their projections also show better 

species distinction compared to Fig.  4. Here, Ae. aegypti 

and Cu. quinquefasciatus are clearly separated from other 

species, with more compact groupings of each specimen. 

With only two parameters, the overall accuracy slightly 

improves (44.14%), confirming that Freq and Harm1 are 

sufficient to better separate certain mosquito species, 

simplifying the model while achieving a performance 

slightly above the previous set. 

 

 

Fig. 7. Comparison of confusion matrix performances with different parameter combinations (a-d): Influence of 

Freq, 

 

Fig. 8: Projection of male and female specimens based on the 10 main selected parameters (Freq, Harm1, Harm2, 

and MFCCs) in PCA space, showing high variability and significant overlaps between certain species. 
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Fig. 9: Projection of male and female specimens based on the 2 main parameters (Freq and Harm1) in PCA space, 

providing better separation and reduced overlaps between species. 

 

DISCUSSION AND CONCLUSION 

Fig.  5 shows the probability density of wingbeat 

frequencies for male (a) and female (b) mosquitoes. This 

representation reveals overlapping frequency ranges for 

certain species, notably Ae. aegypti and Cu. 

quinquefasciatus. This overlap indicates that frequencies 

alone may be insufficient to differentiate mosquito 

specimens, especially when frequency ranges are similar 

or close. This limitation is more pronounced in the 

distribution of female specimens, where the overlap is 

more significant. These observations highlight the 

importance of supplementing the analysis with other 

discriminative parameters to overcome the ambiguity 

related to frequencies alone. Fig.  6 shows the relative 

importance of parameters using the Random Forest, 

Lasso, and Recursive Feature Elimination methods. It 

appears that wingbeat frequency (Freq) and the first two 

harmonics (Harm1 and Harm2) are the most influential 

parameters in species differentiation, representing 

54.25%, 14.56%, and 11.60% importance, respectively, 

with the Random Forest method. While MFCC 

coefficients contribute less (around 1–2%), they still 

improve the model's performance. This importance 

distribution suggests that while frequencies and 

harmonics are primary parameters for classification, 

MFCCs may play a complementary role, especially in 

reducing classification errors due to frequency overlap 

observed in Fig.  5. 

Table 1 compares the performance of classification 

models (SVM, k-NN, MLP, and Deep Learning) based on 

three distinct objectives: 

 Objective 1: Use all available parameters, maximizing 

accuracy (up to 89.24% for MLP) but at the cost of high 

complexity. 

 Objective 2: Parameter selection using Random Forest, 

Lasso, and RFE, simplifying the model while 

maintaining similar accuracy (89.24% for MLP), 

demonstrating the efficiency of parameter selection. 

 Objective 3: Dimensionality reduction with PCA, 

which reduces model complexity and performance 

(83.15% for Deep Learning). Although this reduction 

simplifies the model, it results in information loss and 

reduces accuracy, making it less suitable for precise 

biological classification. 

The results indicate that objective 2 represents the best 

balance between performance, complexity, and 

interpretability, particularly with the use of Random 

Forest for selecting the most discriminative parameters. 

Fig.  7 compares confusion matrices for various parameter 

combinations, highlighting the impact of frequency (Freq) 

and the first harmonic (Harm1) on model accuracy. The 

combinations using only these two parameters (Fig.  3-d) 

achieve an accuracy of 44.14%, confirming that these two 

parameters alone are sufficient to distinguish many 

species. 

The results presented in Fig. s 8 and 9 confirm that 

reducing the number of parameters improves the 

visualization and separation of mosquito species in PCA 

space. In Fig.  4, although 10 parameters were used, 

significant overlap is observed between specimens, 

notably between A. arabiensis and A. coluzzii. This 

overlap suggests that certain parameters, such as MFCC 

coefficients, do not substantially benefit mosquito 
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classification. This observation reinforces the idea that 

additional complexity from certain parameters does not 

always improve classification model performance. 

In contrast, Fig.  9 illustrates that using two discriminative 

parameters—namely, the fundamental frequency (Freq) 

and the first harmonic (Harm1)—provides much better 

separation between species, particularly for mosquitoes 

like Ae. aegypti and Cu. quinquefasciatus. These results 

highlight the effectiveness of these two parameters for 

classification while limiting model complexity. This 

finding is supported by results from the confusion matrix 

(Fig. 7-d), where the use of Freq and Harm1 achieved the 

highest accuracy among the combinations tested 

(44.14%). This demonstrates that adding extra parameters 

is not necessary for improving classification performance, 

confirming the value of a minimalist approach. 

These observations align with several previous studies 

emphasizing the importance of frequency- and harmonic-

related parameters in insect classification. (Potamitis et 

al., 2015) demonstrated that the fundamental frequency 

and its harmonics are key indicators for distinguishing 

different insect species based on wingbeats. Similarly, 

(Potamitis & Rigakis, 2016) showed that fundamental 

frequencies and harmonic properties of wingbeats allow 

for distinguishing various insect species, such as Cu. 

pipiens, molestus, A. gambiae, and Ae. albopictus, using 

2D optoacoustic sensors to record spectral properties. 

When comparing our results to these studies, using simple 

parameters like the fundamental frequency and first 

harmonics constitutes a robust approach to mosquito 

species classification. Our results confirm this conclusion, 

showing that reducing the number of parameters can not 

only improve data visualization and classification 

accuracy but also prevent the risk of over-complexity. 

Thus, a streamlined approach based on essential 

discriminative parameters appears to be more effective 

than complex models that include redundant or 

uninformative variables. 

The study (Vamsi et al., 2024), titled “Machine Learning-

Based Classification of Mosquito Wing Beats Using Mel 

Spectrogram Images and Ensemble Modeling,” takes a 

different approach, focusing on feature extraction from 

Mel spectrograms derived from mosquito wingbeats. The 

authors use convolution techniques to extract features, 

followed by ensemble models combining classifiers such 

as SVM, Random Forest, and Decision Tree. This model 

achieves an impressive accuracy of 95.05% for Ae. 

albopictus, demonstrating the effectiveness of advanced 

machine learning techniques for classification. However, 

although this approach offers very high accuracy, it relies 

on more complex feature extraction methods and similar 

models, which can increase computational complexity 

and associated implementation costs. 

In comparison, our results show that it is possible to 

achieve reliable classification with much simpler 

parameters, such as the fundamental frequency and first 

harmonics, without significantly impacting accuracy. 

This minimalist approach can be particularly useful in 

applications where simplicity, fast execution, and low 

resource consumption are essential, especially for field 

monitoring systems or low-cost devices. The limitation of 

this study lies in the relatively low accuracy; we believe 

that adding other relevant parameters would improve this 

accuracy. While ensemble models and complex feature 

extraction techniques can offer remarkable accuracy, our 

study highlights the effectiveness of a reduced and 

optimized approach using key parameters for mosquito 

species classification. This method not only simplifies the 

models while enhancing data visualization in PCA space 

but also avoids over-complexity, which can hinder overall 

performance. Our results align with previous studies 

while providing a fresh perspective on the importance of 

simplicity and essential discriminative parameter 

selection to improve mosquito classification. 

This study has demonstrated that reducing the number of 

parameters while retaining the most relevant ones, such as 

frequency and the first harmonic (Freq and Harm1), 

improves mosquito specimen identification while 

minimizing the complexity of classification models. The 

use of the Random Forest method for selecting 

discriminative parameters proved effective, and the 

integration of additional parameters, such as the degree of 

linear polarization, could be a promising avenue for 

further improving results, especially for species that are 

difficult to distinguish. 
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